Sugarian formations the 1 were trucked byten will be fort \$-\$ to plantame and distance wither built of the texture.

Isotrophytical of the remaining diportion forest fragrants and assets from scannish. In assise the consenterm reglatement of the parage factor which was second any arresp. That the zero Alline have not appropriately by the expect the expectation. contractly of the superconduction of system of the Suser Tracket early of the coducid flows are upperharmate conserval ducts occidental water are bringful to the national institutions of the community to the instruction of turbtain bij grad vedet (taktoria) bil elek bil bij seriot bygginen og Tre og plant. caregory artists. To Promotify continue district for the Paging Page 2 Turithense an EAC (Peed 15ftp) (598e), but herent streller in Ataly he have in exthat the operation of statements, a phrealogue, outlier, it performs the best ervigos episológ tabbane obra acha anodadwanas (Fagil et al. Aregoapplication of the professional development of the control of the promise (2) amount it. Exercise the according to the contact of the source which more atty inteprets of Carad ephano that demonstration that the members we there will seg with a grant and the old the model that the substitution was the confidence was the last in section for which we discontinuously in the property was logacities the arrive win reparte of extraction into the of expension of track to de gentrality and execution the competative explained of a strowerd and would by tamazine or organization tork to replace to all 1000s.

dome greathers were cased as a semi-mondocted bosons theory as a braign of the forest entries a section of the remainder of the contrast theory and brain of the contrast of the contrast and the contrast of the contrast of

A proof our oppositive supposed then granted then granted the control of wever the due to a court of these operator along the loser courtee schedule protection of the court of these operators are not then the account of the courter of the courte

Fig. 4 -ths. To late surfer, flow level may fall on low 1 \sim 10 pm (News 2 - physe) and Newscart systems of the depth to the water table of the figure to the process of partially to the state of the figure to the second of the figure of the second of the figure of the second of the figure of t

In which the possible such that which the unit term trained active of the property of the company in a westay polytic and taken to be trained by active as a supplied to the body of the contract of the representation which are provided as a contract of the contract of provided and the active are representationally and the active as a first affective which will provide data show that repair the distance of the contract of the provided data show that repair the distance of the contract of the

Walang Throbbide contraction

This provides the content of generally are companied for the season of all all and the seasons of the content o

$S(\Theta) = \{ \{ \{ \{ \{ \}, \{ \} \} \} \} : \{ \{ \{ \}, \{ \} \} \} \} \} = \{ \{ \{ \}, \{ \} \} \} \} \}$

Although the end of any substitutions were then stored above the the consistent of any other to apply an instruction to displace the follower Tracks. These the root can be apply an instruction of mature tracks for the example of the following the followi

tions has fire out 1 a fliesche marita the previous einter in a party of the work. In every time, fireing troop, culters steps the taken to agree 1 and temperate to the average troops to account a factor to be a troop to be a factor of the fireing troops and the fireing troops are factor of the factor of the

The imposite of prompts to the moth two of drivate of the drawn for one back of the murkly are a chart on the minute of wishest remain. Penner and group a specialize of the in the conform of regarded enterpression by kineticing group of sources with a way and be a late the establishment of wellars regetation. Its law respect, becase ran private will anexpective and low maintenance space increase the the east because agrant was by letter 5 toy (as in 5) does of \$30 wash the forever a first true of the con-Totalomaticky in a Beet (Bolton on half-general) confide subscriptional companies on is greatly Between a District. Meeps was a room section ascentis missinged the degraph was section in reaven to the story controls to a grading of otherwalanks that the grade by a figdestruction of the contract of should not Alighboth Floor too in working, but placed we has many an prescribed is like information because posterior number important previous interestable continues. were might you can come, consider set see nemount from the impartable elementer. historical integral our sign mentiolege to expected existing times on birestown on plantaneas. The high condition of material returns to be executed in the secparties a single operational topical attachment for tax for policer.

throughout register weeks along the lower is zero earlied property in a section, throughout, and becomes residue. The last of these while a communication compared to the following while a communication of property and a perfectly and an appearance of the following property. The following extremely around the compared of the following property and the following property of the fol

surveys, the consistences of general based on the top of the application of a some formal and the solutions of the solutions

Impacts Analysis

Surrout its the limitarish sensetiwe is decay, its Introduction is that monthly, the productions are not been Appendix Books become deviated that their states are policial workwilling. In order by in one contactivities of two larger Santa and sufficient content offernatives out to evaluate the conjugational ease that granted to the typhologic region. The wife bit, it has the high leads from marriable you be retibed for each reach by bubb continuous executions as a contraction reconsists a representation. For example, the or good beautiful ran he societies and polytical is a specific genical of mayorduning the water give, or the constant of 11 LL can be speciated as a grade of values expansion of section (i.e., the agrees it is one of the companies to the components of the periodic to much the specific deficit, and As a since indept. These sufficients will be substitution course, if you at it in it y FYSI: In light h, we will be real define the internation of the Lydelling constitutions with the highest contability fraction of the conserved type was a Control of the contro executed that a little will be evaluated the content of the conten tartion but were body or the acceptance of the by selective decisioning

A April ACT CVAN ASSES PROCESSES

Purpose and Overview

The provides to the wildlick of a form translating and ity to the resonance are exact and contact, and along the Drumbee eigenstand between which are provided in a computer than a few between the during the provided in the provided was appearanced by the few provided and the provided the provided the provided translating and the provided translating translating the provided translating t

this, is authorated evaluate of contrasting and the quarticity of the line will be added to the contrasting and the property of the matter and the definition of the contrast will be a solution as a second with manuscraps of the motivation. For each of the contrasting and the description of the contrasting and the description of the contrasting and the following that the contrasting and the following the contrasting and the contrasting

But all quantity is govern, this estable. But to types, rise of "a vortion to human substitution of an estable quality, asserted another the steam area. The control quality discovered asserted another the control of the control of

Three projects of the set were actually decay in part accessed to a position of a quantity and the model as never as points in the first term of the first of accessed part of the first of

From dation openier? #37% and Patient accesses are digited for all Estages (exp., Appropriate to the respect Coaselines). Exploit assessment in a consist of a program of the solution of the

is a set label and consequent october in portroation over section by the first set of Equation 2 property. The $x\in U$ is it the net change in AA-U/or x the p_1 or x that the x the consequence of the x the state of the consequence of the x-state of the consequence of x-state of x-

Assumptions

Pervension depressor and september of the person of the person of the person of the contract o

- is, an about an expected point to increase the characteristic forms of any analysis of a well-public partial at all.
- Z. Quart C. Avanguar C. Cym. P. Wildelig House, Nathoriti Biologic Harden, Cym. Rev. Bernalling Communication of the Cartering Communication of the Cart
- The OPE Assessment as work (1) applicable oray to tok a lighter contract, and as
- BUT made in are bygonastes based on assigning your.
- (i) and included expressional reductions may not remove manage together the contract of the product of a solem entire the specific of a solem entire the specific contract of the contract
- 7. The Shi being the and enclosive medical as a σ-score of Express grating that so weaken also be seen yielded to the grade type type these there.
 1- proceedings for the model of or species.

Resource Objectives

A graphic service object we can the Taution B von B parent Styly on the called visit of a parent described wilders on the content of approximation of the parent described wilders will extend on the content of the con

- 1) In the orders by, increasive, who compared startly delegatives in the executive started and the engage training of the order of the engage.
- (2) Fig. dentify and concerns significant objects throb to be mestern subject as we get at less.
- the control of the property of the field of the control of the con
- 4) In this is the appear and where provides executable in heritage point species and, in particular, newsour and crossive weeks not an propagation of the original.

Evaluation Species Selection

To complete the object of postages, coalsation of more were inside a complete of the expenses of appreciation and applied nower types. A preciamony of the end observable of the expenses of the end observable of the PRS Colpreciation (above to Problem 10 of the Englishment of the authorists from the Problem 10 of the end of the PRSWS. Despet in derivate pulsely, open expenses of the PRSWS and the Problem 10 of the end of the end of the PRSWS.

A topal of eight openies were becamber. Whose two a abed to recent the explanation apenies for a solution works

- Zue aperse, mind have a retarrantly augo past pullarly as a minimum as the ratios area.
- And species will alkedy to appear to by the oranged of each oliginal problem.
- 2. Outfluences than must be armoughle as solven with outer reaser to confuse to a relation by personal field to be a selection of pulling and other discours of a species programming to a selection of the constant two seconds one. The order with intultions for the gardeness and continuously.
- 4 The Lage Laber function in additional on the value, years as a collection of the highest transfer discount for the evaluation of years.
- Farm emblaction species of Tower the Datatit type is they want referred to remresent.
- The openings without on each agreed by the interiors regard only support follows or with entrangement of the sector areas.
- The operator has the potential operators of the management according to the potential manifestion areas.
- Thy special costs on continue to the areas.

awarizate that when beddinged purity of the application. Be did model, when smalled that when beddinged purity of the application is denoted by accombinate. Sowers, model, its bank, whose thrasher, and yetch washles are replicable right of the range of the receipt. Western would power and which is waitful that a day were never yet for the western of perifficial interior and then, it there is no confidence of the season of perifficial that is not perifficial to a perifficial to the season of the residence of the confidence of the season of the residence of the applicable of the knowledge of the season of the sea

Table XV. Evaluation species, habitat types, model variables and cover types used in the Habitat Evaluation Procedures (HEP) analysis.

Evaluation Species	Habitat Type	HEP Model Variables	Cover Type
1. Wilson's Warbler	Callonwood-Pare	% shrub cover	Mixed Pine
		% overstory canopy cover	Black Coltanwood
		% herb cover (>6")	
2. Wissiern Wood-Pewee	Cottonwood-Pine	Habital slage	Mixed Pion
		Distance from edge	Black Cottonwead
3 Yellow Warbler	Collonwood/Withwi	% deciduous shrub canupy gover	Fremont's Colleawood
		Average neight deciduous shrub canopy	Alder Wiltow
		Deciduous shrub candoy, hydreighylid	Mixed Willow
4. Northe: r Or ble	Cottenword/Willow	Average height deciduous free canopy	Fremont's Cottonwood
		% quadquous free cauchy cove.	Alder Willow
		Stand width	Mixed Willow
5. American Kestrel	Cattonwood-Pine	% pare 0.o°uq	
	Cottonwood/Willow	% herbaceous cover <= 12" (all	Black Cottonwood
		% shrup cayor <= 1 6 5°	Fremont's Callahwood
		Number perchisites	
		Vegetative structure	
		Number of nest sites/acre	
		O stance to nest	
		O stance to food	
6 Min's	Riverine	% year with surface water	Riverine
		% free/shrub canopy cover within 100m (3.28 feet)	Emergent
		of water or wetland edge	_
7 Muskrat	Riverina	% stream gradient	Rivenne
		% overne channel with surface water present	
		dering typical minimum Snw	Emergent
		% channel dominated by emergent herbacious	-
		vegelation	
		% herbaceous cover within 10m (32 8 feet)	
		water's edge	
8. Sage Thrashor	Sagebrush	% canopy cover (strub)	Upland Shrub
•	Uplands	Average shrub height	-
	-	Evergreen shrub type	

Field Methodology

Next addition various with message and the string value of the string of the string in a suppression of the string of the string and the string of the strin

Compliant is during without a color to the right of the restrict of the color of th

Raseline Analysis

The arm of extent of Papetas types were will between first gives two standards where disputy per contract ACTOCAT expression. Table XV ensure the instruction of extensions and the property of extensions types contract extensions of the extension of extensions. Mixed mixed types a subject to the thorough extension were resolutioned by additing the arms of the extension of the extensions of the extension of the extensions of the extension of the e

Variously, measured in the fields at each topocast to a each evaluation, were appropriately for extensive definition of the field of the state of the state of the field of the field of the state of th

Table XVI personne include the difference by evaluation begins one than the control of the contr

The remainder as the restrict of BEH to devotes to a constitution of the public terms of the public of the second state of the

Johnson, of Purez Weightig warbide and Western W. Depower.

Herman will be even and will the warfler were information to a present only the support of eventure to the movie before the allocations and by block with movie. These two appears to the experient of the movie beautiful with the author. The movie beautiful to the author. The movie beautiful with the lagrance of the appropriate two first presentables and the authorized beautiful to the first of the authorized beautiful with the experience of the authorized beautiful to the au

hetrese will represent a result of processes fill viluate unions to an even was specially as a known of the manufacture of the even of the control of the even of the even of the control of the even of the even

All the smallest ACT will be the entropied to the body of the western as a process of the smallest and the smallest and the same of the smallest and the same of the same of the smallest and the same of the same

Table XVI. Base inc hiabitat Suitability Indices (MSI), total acres and total habitation its (HU) by evaluation species and by reach. Derived from Habitat Evaluation Procedures (HEP) analysis of the Lower Truckee River

	Wilson's Warbler Cottonwood-Pins	Avg HSI	Total Acres	Total HU's
REACH 1	Lake Tahde to Boda	0.468	11.00	5 15
REACH 2	Boca to Stateline	0.738	24 79	18.30
REACH 3	Stateline to Vista gauge	0.738	31.72	23 41
REACH 4	Vista to Derby Oam	0.174	0 CO	0.00
REACH 5	Derby Dam to Wadsworth	G.174	0.00	0.00
REACH 6	Wadsworth to Dead Ox Wash	G.DCD	0.00	0 0 0
REACH 7	Dead Ox Wash to Numana	COCD	0.00	0 C O
REACH 8	Norgana to Marbie Bluff	0.000	0.00	0 00
	Western Wood-pewee	Avg	Total	Total
	Cottonwood-Pine	HSI	Acres	HU's
REACH 1	Lake "anne to Boca	0.492	11.00	5.41
REACH 2	Boca to State ine	0.357	24.79	8 85
REACH 3	Stateline to Vista gauge	0.357	31 72	11.32
REACH 4	Vista To Derby Dam	0.000	C.D()	0.00
REACH 5	Derby Dam to Wadsworth	0.000	0.00	0.00
REACH 6	Wadsworth to Dead Ox Wash	0.000	0.00	0.00
REACH 7	Dead Ox Wash to Numana	0.000	0.00	0.00
REACH 6	Numana to Marb o Bloff	0 000	¢ 50	0.00
	Yellow Warbler	Avg	Total	Total
	Cotto nwo od/Willow	HSI	Асгев	HO's
REACH 1	Lake Tahoe to Boca	0.421	28.15	11.85
REACH 2	Boca to State ine	0 403	26 38	10.63
REACH 3	Stateline to Vista gauge	0.529	73.46	38.86
REACH 4	Vista to Derby Dam	0 455	39.09	17,79
REACH 5	Derby Dam to Wadsworth	0 465	53 54	24.36
REACH 6	Wadsworth to Dead Ox Wash	0 573	84.00	48 13
REACH 7	Cond Ox Wash to Numaria	0 573	2 02	: 16
REACHB	Numana to Marble Bluff	0.673	62 11	35 59
	Narthern Orlole	Avg	Total	Total
	Cotto nwo od/Willow	หรัเ	Acres	HU's
REACH :	Lake Tahod to Bodo	0.085	28 15	2 39
REACH 2	Boda to State ine	0.678	26 38	17 89
REACH 3	Stateline lo Vista gauge	0.363	73 46	26 67
REACH 4	Visla to Derby Dem	0.60:	39.09	23.49
REACH 5	Carby Dant to Wadsworth	0.60:	63 54	32 18
REACH 6	Wadsworth to Dead Ox Wash	0 645	94.00	54 18
REACH 7	Coad Ox Wash to Numeria	0.645	2.02	: 30
REACH 8	Numana to Marole Bluff	0 645	62 11	40 08

	American Kastrel Cottonwood-Pine, Cottonwood/Willow	Avg HSI	Total Agres	Total HU's
REACH 1	Lave Tahos to Body	0.140	1 43	0.20
REACH 2	Bodz to Stateline	0.468	19 66	9 20
REACH 3	Stateline to Vista gauge	0.198	48 59	9 62
REACH 4	Vista to Derby Dom	0.000	17 95	0.00
REACH 5	Derby Dam to Wadsworth	0.000	26 17	000
REACH 6	Wadsworth to Dead Ox Wash	0.000	37.90	000
REACH 7	Dead Ox Wash to Numana	0.000	0.00	0.00
REACH 8	Numana to Marbie Bluff	0.000	19.70	00 C
	Mick	Avg	Totaí	Total
	Riverino	HSI	Асгев	HU's
REACH 1	Lako Tahoe Io Boca	0.780	47 01	36 67
REACH 2	Boda to State me	9 9 2 6	29.61	27 42
REACH 3	Statoline to Visla gauge	0840	56.76	47.68
REACH 4	Vista to Derby Dam	0.748	60 15	44.99
REACH S	Berby Dam to Wadsworth	9.748	25.03	13 72
REACH 6	Wadsworth to Dead Ox Wash	9 733	21.34	15.64
REACH?	Dead Ox Wash to Numana	0 733	14.44	10.58
REACH 8	Numana to Marole Biufi	0 733	19.23	14 10
	Muskrat	Avg	Total	Total
	Rivoring	HSI	Acres	RU's
REACH 1	Lake Tahoe to Boca	0.40	47 Q1	18.69
REACH 2	Bosa to Stateline	0.53	29 61	9 78
REACH 3	Stateline to Vista gauge	0.42	56.76	23.65
REACH 4	Vista to Derby Dam	0.45	60 15	27.31
REACH 5	Derby Dam to Wadsworth	0.45	25.03	11.36
REACH 6	Wadsworth to Dead Ox Wash	0.50	2134	10.60
REACH 7	Dead Cx Wash to Numana	0.5C	14,44	7.17
REACH 8	Nomana to Marcle Bruff	0.50	19 23	9.55
	Sage Thrasher	Avg	Total	Total
	Sagebrush Uplands	HŞI	Acres	KU's
REACH 5	Lake Tahoe to Beca	0.535	1 93	1 03
REACH 2	Bosa to Stateline	0519	12.36	6 41
REACH 3	Stateing to Vista gauge	6.370	2.27	0 B4
REACH 4	Vista to Derby Dam	0 791	34 OC	26 B9
REACH 5	Derby Dam to Wadsworth	0.791	20 01	15 83
REACH 6	Wadsworth to Dead Ox Wash	0 329	28 36	9.33
REACH 7	Dead Ox Wash to Numana	0.329	12 15	4 00
REACHS	Nomana to Marble Bluff	0 329	46.11	15.17

Table XVII. Baseline Hiabitat Suitability Indices (HSI), total acres and fotal habitat units (HD) by reach and by evaluation species. Derived from Habitat Evaluation Procedures (HEP) analysis of the Lower Trucked River.

REACH 1 Lake Tahoe to Boca	Ava	Yotal	Tatak
Fave latine to poca	Avg HSI	Acres	HU's
			_
Wilson's Warbter	0.468	11 00	5.15
Wastorn Wood-pewee	0.492	11 00	5.44
Yellow Warbler	0.421	28.15	11 B5
Northern Ohole	0 085	28.15	2 39
American Kestrel	0.140	1.43	0.70
Mink	0.780	47.01	36 67
Muskrat	0.400	47.01	18 69
Sage Thrasher	0.535	1 93	1 63
REACH 2			
Boca to Stateline	Avg	Total	Total
	HSI	Acres	HU's
Wilson's Warbler	0.738	24.79	19 30
Western Wood-pewee	0.357	24.79	5 8 5
Yellow Warblet	0.493	26 38	10 63
Northern Oriole	0.678	26 38	17 89
American Kostrol	0.498	19.66	9 20
Mink	0 926	29.61	27.42
Muskral	0.330	29.61	9.78
Sage Thrasher	0.519	12.36	641
REACH 3			
Stateline to Vista	Avg	Total	Total
	HSI	Acres	HÜ's
Wilson's Washler	0.738	31.72	23.41
Western Wood-pewee	0.357	31 72	11 32
Yellow Warpler	0.529	73 46	38 85
Northern Orio e	0.353	73 46	26 67
American Kestrel	0 198	48 59	9.62
Mink	0 840	56 76	47.68
Muskrat	0.420	56 76	23.85
Sage Thrasher	0 370	2 27	0.84
REACH 4	A	Tetal	Total
Vista to Derby Dam	Avg	Total	Total
	HSI	Acres	HU's
Wilson's Warbler	0.1/4	0 00	0.00
Western Wood-pewee	0 000	0 00	0.00
Yallaw Warbler	0.455	39 09	17 79
Northern Chale	0 601	39 09	23 49
Antonican Kestre	a pço	17 95	0.00
Mink	0 748	60 15	44 99
Maskrat	0.450	60 15	27.31

Sage Thresher	0.791	34 00	26 89
REACH 5			
Derby Dam to Wadsworth	Avg	Total	Total
	нзі	Асгев	HU's
Wilson's Warpler	0.174	0.30	U.DC
Western Wood-gowea	0.000	0.00	G.DC
Yel'ow Warbler	0.455	53.54	24.36
Northern Orale	0.501	53 54	32 18
American Kestrel	0.200	26.97	0.00
Mink	0.748	25 C3	16 72
Moskrat	0.459	25.03	11 36
Sage Thrasher	0 791	20 C1	15.83
REACH 6			
Wadsworth to Dead Ox Wash	Avg	Total	Total
	HSI	Acres	HU's
Wilson's Warbler	0.000	0.00	0.00
Western Wood pewer	D C 0 O	0.00	000
Yellow Warbler	0.573	64 00	48 13
Northern Oriolo	0 645	64 00	54 18
American Kestrel	5 000	37 90	3 00
Mink	0 733	21.34	15 64
Muskrat	0.500	21.34	10 60
Sage Thrasher	0 329	28 36	9.33
REACH 7			
Doad Ox Wash to Numana Dam	Avg	Total	Total
	HSI	Acres	HU'ş
Wilson's Warb or	0.000	c ab	0.00
Western Wood-powee	0.000	C 0 0	000
Yellow Warble:	0.573	2.02	1 16
Northern Oriole	0.645	2.02	1 30
American Kestrel	C 00G	0.00	200
Mink	C 733 C 506	14,44 14 44	10 58 7 17
Muskral Sage Thrasher	C.329	12 15	4 00
REACH 8			
Numana Dain to Marble Biuff	Avg	Yotal	Total
	ны	Acres	HU's
Wilson's Warb or	0.000	0.00	0.00
Western Wood-pewee	0.000	C 0.0	0.00
Yellow Warbler	0.573	62 11	35.59
Northern Origle	0 645	62 11	40.06
American Kestrel	0.000	19 70	0.00
Mink	0.733	19 23	14 10
Muskral Saca Thrashar	0.500	19 23 46 11	9 55 15 17
Sage Thrasher	0.329	40 11	15 17

 $\textbf{Table XV} \textbf{iii.} \ \ \, \textbf{Fred Data values, Habitat Evaluation Procedure mode. Suitability Indices (S.), and overall Habitat Suitability Indices (hSI) for Western wood-power (Cottonwood-Pine Habitat).}$

	ħ	abitat	distance to	
	stage		edge	
	value	S 1	51	HŞI
Amergas	1-2	07	1 G	173
Bridge	miked	33	1 0	451
Granite	4C	.45	10	588
Martis	4.8	.77	10	840
Boca	wt avg	228	10	.377
Reach 1				.492
Farac	2	O	10	ō
Verd	38	.6	1 D	714
Reach 2				.357
Oxbow	.D18	۵	10	0
Spice I	2	Ď.	10	0 0 0
Reach 3 (used value of reach 2)				0
Cark	2	0	10	<u>c</u>
Reach 4				0
Powerline	2	0	10	<u>c</u> 0
Reach 5				0

Table XVIX. Field Data values, Hisbital Evaluation Procedure model Suitability Indices (\$1), and every Hisbital Suitability Indices (HSI) for Wilson's warder (Cottonwood-Pine Habital)

	% shrub cover		% ove	retory	% beri	bs >6"	
	value	នា	valup	ŞI		\$1	HSI
Amergas	18.B	750	38	190	43.6	365	.590
Bridge	23.2	.928	26.7	10	27.9	.198	643
Granite	210	840	12 1	505	29.4	235	553
Martis	0	C	4.9	.245	17.3	0	D
Воса	21.2	.848	c	c	29 a	.225	545
Reach 1							.468
Farad	39.9	1 D	5 B	290	38.3	456	594
Verdi	75.4	10	44 4	934	45.6	.645	881
Reach 2							.738
Ox00+	72.7	660	0	0	17.7	ŷ.	9
Sρ c e I.	17.5	.700	0	0	19.9	C	<u>C</u>
Reach 3 (used)	alue of read	ch 2)					ā
Clark	6.7	.268	5	D	22.9	.073	.174
Reach 4							,174
Powerline Reach 6	3.8	.152	0	9	16.7	G	20

inner maked Will will Yelliam Esphin und melander opposit

The perfect of the Content of the co

Table XX. Field Data values. Habitat Evaluation Procedure model Suitability Indices (SI), and overall Habitat Suitability Indices (HSt) for Yellow warbler (Cottonwood/Willow Habitat).

	% deciduous shrub canopy cover				% deciduous canopy, hydro				
	value	ŞI	eutsv	SI	suley	SI	HSI		
Amergas	90 6	.788	1.26	.629	100	1.0	704		
Budge	32.9	559	.91	.478	95.2	966	508		
Granite	45.3	770	65	325	99.5	.996	499		
Martis	0	0	C	0	0	.'	0		
Boca	39 3	668	47	.235	100	1.0	<u>.396</u> . 42 1		
Reach 1							.421		
Farad	390	563	751	381	95.9	972	496		
Verdi	24 7	420	458	.229	100	10	<u>3 ° 0</u> , 404		
Reach 2							,404		
Oxpow	653	10	95	475	100	10	.689		
Space I	20 9	.355	.76	383	.00	10	<u>369</u> .529		
Reach 3							.529		
Clark	42.8	728	72	36	76.6	789	455 .455		
Reach #							.455		
Powerline Reach 6	27.6	.469	1.38	.70	.00	10	. <u>573</u> .573		

.....

Participal interpretation of Carlotter and Kalamara Anni anni 1887, 1997.

And itself a line which caredway hardtab subtime for Aperlean Moderni, a courty destine appears greater, a premium at the streets, were just without and a line to the streets where the time to an extension and persons a cities of heavy struct wenefully in the time to constant about the problem. As sections are known as read as no which is a cities of the time, are greater by the greaters which the above the same as \$1.50.

Mistril Evi malawa are irrated by the vector let in it are established by the reven marking into a later table value of all or to get a when the contract of t	Leading the Restault of the ACC and the Con-
	91

resolites in the true of State 5.5 or 1.5; that is, may, pares were elevely read, it there was no less that the contract comparisons where are particular to the comparison where are particular and the comparison of the compariso

Table XXI. Field **Data** values. Hisbitat **Evaluation** Procedure model **Suitability** Indicos (Si), and over all **Habitat Suitability** indices (HSI) for **Northern** or pile (Cottonwood-Pine Habitat).

Avg Helq	ght deciduou	s tres	% deciduou	s tree	Stand width	
	canopy	canopy cover		COVEF		
	válub	ŞI	value	SI	21	HŞI
Amergas	G	0	٥	0	D	0
Bridge	G	O-	0	9	D	0
Granite	810	10	5.7	.228	333	424
Martis	u	C	G	0	0	Ð
Boca	a	С	C	C	٥	_0
Reach 1						.085
Farad	27.0	77	5 8	.232	400	.415
Verdi	45.5	10	44.4	1.0	833	941
Reach 2						.678
Oxbow	72.0	10	12.7	.508	.750	725
Spine L	0	۵	0	0	.250	
Reach 3						.363
Clark	59.1	1.0	15.5	620	.350	.BC 1
Reach 4						.601
Powering	63.6	1.0	11.B	472	567	.645
Roach 6						.645

Reversions - Penal and Passers

stretize habital for fund up of generally given guality at up the entry stret;
subjects from 0.7 at 4-topes (introduct) to 0.4 in Section 1. iTable XXCCC:
there the systematic wides it in the middle tope green to 1. in the stret;
for the introduction may be given. Mark values agent expectations of the expect to
Typesext tree units contry outer with in the of with it wouldn'd entry.

notices and salue outer factors of two states are expensively expensively. The result of the photocological property of the pr

Table XXIII. Field Data values, Habital Evaluation Procedure model Suitability Indices (SI), and overall Habital Suitability Indices (HSI) for American Aestrel (Cottonwood-Pine and Chitonwood-Willow Habitats).

	% herbaccous		% bareg	round		իրւոր		
	cover < 12"				canopy			
	value	ŞI	ASING	51	välue	ŞI	HSI	
Amorgas	1664	548	.263	.526	18 8	10	.>	
Bridge	2926	.967	346	.692	23 2	10	->	
Granite	.2377	784	.:76	.352	21 G	10	->	
Martis	.2522	.832	538	10	0.0	1.0	->	
Boca	a	C	197	394	21 2	1.0	-:-	
Farad	0Q52	017	288	576	39 9	.869	. 8	
Verdi	0744	246	234	468	25 4	1.0	-0	
Oxbow	16	528	444	88	72.7	.390	40	
Spicel	0412	136	072	144	:75	1 C	-8	
Clark	9	0	465	97	67	1.G	->	
Powenise	o	0	410	.62	3 8	1.0	->	
	# perchege	etative	# nestis	tance	distance			
	sitestr	ucture	sites to	nest	to food			
	51	\$1	\$1	21	ŞI		HSF	
Amergas	10	5	1.0	10	10		0	
Bridge	10	5	1.0	7 D	10		699	
Granite	10	Э	9	10	10		c	
Martis	1.0	1.0	1.0	1.0	10		Ċ.	
Boca	1.0	5	9	Ð	10		.140	
Reach 1							140	
Farac	0.5	5	10	10	10		297	
Verd	1.0	10	10	10	1-0		645	
Reach 2							.468	
Oxbow	1.0	0	1.0	10	1.0		c	
Spice I	1.0	5	1.0	1.0	1.0		396	
Reach 3							.198	
C!ark	10	٥	10	10	10		-6	
Reach 4							0	
Powerine Reach 5	٥	o	٥	1.0	1.0		_0	

the orige of "purpose of elements with softened water before type of notices flow" and the greaters influence as the 12% value. On the amount being laws capital water for the flow that flow increases of 1 Kert males with the first partial flow increases of 1 Kert males with the first partial flow in the flow in the flow in the first partial fields and the flow in the first partial flow in the flow i

wiften Value							riki di
				95			

for the distribution of the restriction per a value was electron than a very value, and perfect and the figure 8800 , thereforely program is the five states ϵ , $\omega_{\rm electron}$ that is easily by the figure ϵ and ϵ , ϵ and ϵ and ϵ are the first perfect that is expected that is the first perfect of the first perfect that is the first perfect of the first perfect perfect of the first perfect of the first perfect perfect of the first perfect p

Table XXIII. Field Data values. Habitat Evaluation Procedure model Switability Indices (St) and overall Habitat Switability Indices (HSI) for Mink (Riverine Habitat)

	% year wit	h surfaço	% tree/shoub c	апору	
	wate	ւ եւճքու	cover within	328 ft	
	vatue	\$1	value	51	нşі
Amergas	100	10	34.9	.519	B04
Bridge	100	10	52 4	.729	900
Gran:te	100	10	52 4	.729	900
Martis	100	10	6.2	174	556
В оса	100	10	25 D	400	737
Roach 1					780
Fared	100	1.0	51.6	.719	.898.
Vord:	100	1.0	64.2	.870	955
Reach 2					.926
Oxtow	100	7.0	66.4	897	.964
Spice I	100	1.0	22.1	365	715
Reach 3					.840
Clark	100	10	25.6	419	748
Reach 4					748 748
Powerline	105	1.0	24 5	394	733
Reach 6					733

Skiping isn Uplandsi - dajo isnijanos

Tamin obtained indicate of the second of typics was follows the content edge of the reported of record along model of tragen of the sequence. Among a great plant type, and account is the appearance of extended as typic for ever the content type. The experience was measured in American Second by Alfelder in the test of the account of the content of the second edge of the second edge of the content of the second edge of the

Table XXIV. Field Data values, Habitat Evaluation Procedure model Suitability Indices (St) and overall Pabilat Suitability Indices (HSI) for Muskrat (Riverine Habitat)

	éyear with e surfacber or prosentve	baceous				OVE	% ch: with su ring mini	rface	
		•		0	1 waters	edge	-	(low	
	19403	food	6	1970		lood		CONGC	
	value Si	val SI	value	51	value	SI	valuo	SI	HSI
Amergas	100 1.0	Ú .2		10	46.2	462	0.89	0.89	0.43
Bridge	100 1.0	0.2		1.0	38.8	388	0.89	0.89	0.39
Granite	100 1.0	0.2	.528	10	68 3	683	0.89	0.89	0.54
Machs	100 1 0	0.2		10	3 .	031	9.76	0.75	0.22
Beca	100 1 0	0.2		10	41.2	.412		0.75	9,41
each 1									0.40
Farad	100 1.0	0 .2	587	1.0	6.3	063	0.65	0.85	0.23
Verd:	100 1.0	0 2	.6CB	1.0	45 8	.458	0.85	0.85	0.43
each 2									0.33
Oxbow	100 1 0	0.2	602	10	16.9	169	0.84	0.84	0.28
Spice I	100 1.0	0.2	-	1.0	71.2	.712	0.88	0.84	0.56
each 3									0.42
Glark	100 1.0	0.2	.494	10	50 B	.5CB	0.88	0.68	0.45
teach 4									0.45
Powerling	(00.1.0	10 28	4 11	10	87.2	.872	0.50	0.50	0.50
Reach 6									0.50

Table XXV. Field Data values, Habitat Evaluation Procedure model Suitability and des (Si), and overall Habitat Suitability and des (HSI) for Sage Praisher (Uprand Sage Habitat).

	%	Canopy		rage eight	scrub type	
	value	\$1	value	51	SI	HSI
Amergas	۵	0	0	O	10	a
Br:dae	17.5	350	no data	10	1.0	592
Granite	36 1	722	no dala	10	1.0	850
Marks	212	424	34.3	.549	1.0	615
Вога	192	384	>60	10	1.0	620
Reach 1						535
Farail	28 4	568	47	.752	1.0	763
Vergi	4 1	.081	47est	.752	1.0	285
Reach 2						.519
Oxbow	0	0	0	0	10	0
Spice I.	27.3	.546	47	752	1 0	739
Reach 3						.370
Clark	3.3	626	>50	1.0	10	794
Reach 4						.791
Powerline Reach 6	5.4	108	73 3	1 0	1.0	329 329

•		
	98	

LITERATURE CITED

- Automorphisms of procedures, and Main Special Collinsons of Tourney of Magnetic transformation of the Florida Collinsons of the Report of English Special Collinsons of the Procedures of the Pr
- Parathrapy for the conflictions and expression of the Property of the Property
- Priviles S.F., W.G. Togradam, and E.L. Sen L. (1997). Suter enture in writing recursor physics gray of the observations of a feed assets of a chapter of ageorally. Proceedings Applications Coloration 489.
- ellérania Department (U. V. C.) Reprovident (1977). Parakes à mor Ambre. Consumerous (L. P. pp.)
- discon, D. Thirt. Other were an isome action of the construction of operation of contract of the construction of the first construction. The December 1981 1981
- Agrantes I., W.W. Beings and F.B. Garrens (1997). Afternation of populates wines of the Companies of Establishment of Community Being Management of (2):2237—223.
- Frequency Michigan Course Course Machine Communication (Lower Course) A management of the Course Cou
- Anger, R. M., Delling Selbert Mongress and analytic objects to perform a close of the property of the control of the contro
- Fig. 3, A.G., Grad R.R. Bhartaker. Text. The Land deviced collection of an empty of periodic parts. Proceedings Fig. 187, 1881.
- The Burg, D. C. (189). Therety as a study of the flower Crustee Stude, Without ourly Ryvins. M.S. thousan, therety Study University, Firt C. T. G. (1994).
- used by $p_{ij} = p_{ij} = p_$
- respect to the contract of the contract of the con-

- Bolly Market Builder Marmals of Beradag, in word by I fallborn there is Beradley
- $r_{\rm A}$), $r_{\rm A}$) 3567. Willow one about in the devicty of network in Eq.(28.8) and the transfer devices 4.18×1.18 .
- Figure 19. Figure 19. And the company of the second plants on the second plants of the second second second plants. The second person of the second person o
- abstract, with a lower conditionary descriptions of the terrestration of an abstract forms of the conditional statement between the conditional statement of the conditional statement of the conditional statement of the conditional statement of the condition of the conditional statement of the conditional
- Seeding 1 to the Conference of Marmalia of Conference Provides Conference of Conference of Marchael Conference of Conference
- dense, and design Address on the Control 1990. There is stabled that we are important expensions of the Control Section of the Control English of the Control English of the Control English Section of the English Section of the
- Teruman, N. P. Go., M. Color than equally and Musicape convergence of the contract of the New York of the Computation of the Return of the Return of the Computation of the Computati
- Subdist, S.M., C.W. Sebb, H.J. Ville, and T. Leishis. 1987. Fit only in the control of the above of improved as information of the object of the object. Present Country, No. 1987. Sept. Section 2015.
- McKengar, School 1960. Exchange of within gastify and group-witesforther water in egyptical analysis from the project of the Stanker Scheel, California on Syvada. Consolidade Nathern Costin. Solversity of Severa, Pers. 1967; p. 1977.
- $p_{\rm tot, res}$, $p_{\rm tot, res}$. We show $p_{\rm tot}$. A non-expectation of solution of $p_{\rm tot}$. Solution of $p_{\rm tot}$. Solution of $p_{\rm tot}$.

- Weigh B.R., J. (1981). Subject of the property project of the great on weighted forested a genderic Disc. (0.8). Engl. Propagate and and addition forested expectation. Report 38 (0.01). Wasterney Disc. (10) pp.
- such table of the first conformal activity that persentiates the constant weighted intermediate (Ferragon Fyr. 5.3). Exploit formers $(x_1, y_2, \dots, x_{n-1})$ weighted as $(x_1, y_2, \dots, y_{n-1})$ and $(x_1, y_2, \dots, y_{n-1})$
- Michigan, Scholler Service Company Congress Carl Wighternyers (1987) 1995.
- Indipage, B. Lies T. Liebert the Body on Epoch Standard for Little and the Research of Epoch Society of Experience of the Post of Head allege Grands and Epoch Standard Standard Standard Section 6.
- Rigides, P. L., and E. R. (Dessell) in the 4. Protesting of the loops of the color of the property of the color of the property of the color of the
- Establish W. D. Weil S. M. D. Charles and D. San Assentiation of conduction of the first only desired the world. Character for North Charley, and Weil to Montaline. Devolution 1000, Scillag. No. 1, 1994. Material Style Physics of FAAA.
- Selett, T.J., A.F. Berlingers, F.E. Basilianes, EndisolA. Fix. (1997) introduction sembled to algebra. Weather an Endisonable Adversaria in the electric Medical Network. Englishment Applicable of Children 57.
- Attempters, T.C., and D.J. Misseld, J.P.J. Suparism consenses of the manufactor requirements: Communication of the manufactor of the manufactor of the manufactor of the manufactor of the manufactor. Manufactor of the manufact
- strongers, J.M., and A.I. Patter. Their Controls flow regularization for gutturation of grants transfer to the profit of the Control Control
- deference (J.C.) Act (C.E. Surple (C.E. Castella Tiber relations of regarder of releasing trues of the Mone Bar (C.E. Castella Period Period Technology (Company) (Co
- presentings of the figure and the summation of the summat
- 2.6 For in Target in the Control of Province plan tracked Reservoirs, No. 3 and the Sector of Sector of

- (if) O. B.J. (for B. Wilterwill) (The Company South Area System for Endown and Security South Security (Company Company State State State Security Company State State Security Company State Security Security Company Security Security
- U. . De la mical Survey. Last. Wat a Remainmen Lara Ita Savida, Journal Psid Giza Life News.
- (a) Ovrychitica (Inc.) Sewhand, fre addictiopoded operational rayres, a design desired, (0.2) Department of Interests, Suread of Origin (*.e.) (neighbors) and exercise operations.
- worders as a linear of tensoral factors at late AVIII of the
- Assert Angillerzing will Engage 1932, under 1950 to Ferral Joseph William France will produce a specific of the Charlest Control of States and Control of Produce to Engage Control of the Charlest Control of the Charlest Control of Control of the Charlest Control of Control of the Charlest Control of Control
- Estignes, A.P., ped M.G. Mourant. (1984). Presentant effects, of time and equation devenue. Co. . Art. Correctory of the expedition westerness on Dec.
- 2 (1) C. W. J. (2) E. J. A. Beaver Tableton Links Tensor in System Tableton Lucieses Access Top Little P.T. (1) Cont., Conventing of Section, Proceedings.

Table RIPARIAN 1. Mean monthly flows (cfs) in the Truckee River at Donner Creek, based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended minimum flows of 75 cfs are not met.

		_	٠,	Vet _							Median	<u> </u>		
	Apr	May	1un	Jul	Aus	Sep	Oct	Арг	Мау	Jun	Jul	Aug	Sop	Oct
CC	1577	1552	1255	547	442	455	340	023	778	5 <u>18</u>	173	110	223	250
MA	1504_	1516	1252	543	441	458	347	602	762	517	174	112	226	276
LWSA	6504	1516	1252	543	442	466	348	603	763	516	174	:12	22B	27-
TROA	1534	1546	1293	511	329	307	309	62:	805	551	2:5	116	137	202
				Dry						Ext	remaly	Dry		
	Apr	May	ոսև	Jul	Aug	5ep	Oct	Apr	May	Jun	Jul	AU g	Sep	Ocl
CC	275	,280	158	90	68	89	23	227	293	'33	ន	28	44	5
NA	273	282	158	69	67.	. 73	29	229	253	:30	60	24	34	7.2
LW5A	273	282	158	89	65° 65	72	.314	229	253	120	· 61	24	32	14
AORT	272	391	247	105	89	€1	41	201	260	142	64	22	35	21

Table RIPARIAN 2. Mean monthly flows (cfs) in the Truckee River at the Little Truckee River based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended minimum flows of 100 cfs are not met.

						_			A 40.4	* 1 1111				
			1	Net						M	ledlan			
	Apr	May	Jun	JUI	Aug	Sep	Oct	Apr	May	ոսե	Jul	Aug	56ρ	Oct
cc	Z489	3329	2213	907	657	570	697	855	1319	1051	\$10	553	502	182
NA	2395	3265	2195	894	590	549	773	847	1277	1612	688	520	498	526
LWSA	2397	3264	2196	893	590	519	775	849	1277	:010	588	520	408	526
TROA	2507	3405	2299	698	531	484	683	658	1315	:C22	542	479	450	612
			-	Dry						Extre	HTI BILY I			
	Apr	May	Jun_	Jul	Aug	Sep	Oct	Арг	May	ասև	اپ ل	Aug	5ep	Oct
CC	527	774	626	502	444	323	202	478	553	472	394	185	:35	77
NA	531	741	611	518	448	347	201	474	548	512	408	2t9	99	80
LWSA	531	741	511	519	447	344	199	476	546	5'5	402	217	95	91
TROA	511	699	575	472	438	376	23%	478	518	5'7	417	267	187	135

Table RIPARIAN 3. Mean monthly flows (cfs) in the Trophy Reach of the Truckee River based on model results in wet, median, dry, and extremely dry bydrologic conditions. Shaded boxes indicate when recommended minimum flows of 200 cfs are not met.

						*****	,		11400 11160	<u> </u>		_		
			1	Wet						1	Aad lan	ı		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr.	May	Jun	Jul	Aug	Sep	Oc1
¢¢	2513	3216	2077	812	607	525	691	8 53	1236	968	553	506	450	477
NA	2400	3147	2091	833	573	542	777	836	1189	95B	555	500	482	528
LWSA	2401	3147	2091	833	573	542	779	839	1189	953	555	500	152	528
TROA	2508	3345	2168	856	538	485	680	905	1246	986	532	482	452	516
			- 1	Dry						Extr	emely	Ory		
	Apr	May	Jon	J iji	Aug	Sep	Oct	Apr	May	Jun	Ju1	Aug	Sép	Oct
cc	524	748	555	441	400	297	204	500	516	407	352	170	137	84
NA	522	710	576	492	443	354	209	492	506	471	398	224	104	102
LWSA	523	7:0	575	492	441	350	207	492	506	473	385	221	101	102
TROA	520	665	562	465	450	402	248	±91	491	493	413	294	195	149

ı

Table RIPARIAN 4. Mean monthly flows (cfs) in the Mayberry Reach of the Truckee River based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded hoxes indicate when recommended minimum flows of 200 cfs are not met.

				Ne1							Madien			
	_Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	ابل	Aug	Sep	Oct
CC	2519	3194	2037	775	543	495	663	836	1202	924	505	445	419	448
NA	2394	3107	2040	795	523	495	746	8D7	1136	907	506	450	435	496
LW\$A	2394	3107	2040	754	523	495	747	806	1136	502	506	450	435	494
TROA	2500	3299	2128	616	484	443	649	864	1194	934	486	436	408	482
	_		1	Dry		_				Extr	emely	Dry		
	Apr	May	Jun	Jul	Aug	5ep_	Oct	Apr	May	Jun	Jui	Aug	Sep	Oc1
CC	494	878	496	366	320	228	'52	450	458	334	263	111	87	45
NA	409	669	522	443	393	317	187	453	455	420	348	193	88	60
LW\$A	490	660	521	443	352	312	183	452	455	422	345	191	, B4	60
TROA	438	636	511	421	405	366	222	445	441	445	370	257	162	125

Table RIPARIAN 5. Mean monthly flows (cfs) in the Oxbox Reach of the Truckee River based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended minimum flows of 200 cfs (Aug-Sep) or 100 cfs (Oct) are not met.

			,	West						M	dedian			
_	Арг	May	Jun	Jul	Aug	Sep	Oc1	Apr	May	Jun	Jul	Анд	Sop	Oct
CC	2540	3098	1936	686	429	371	628	612	1099	816	398	346	319	400_
AM	2348	0038	1942	709	428	39Z	688	735	1056	805	404	357	333	430
LWSA	2346	3038	1942	706	429	391	695	735	1055	802	404	356	333	430
TROA	2460	3242	2056	750	407	362	595	796	1132	852	4 08	369	323	420
	_			Dry						Extr	emal y	Ory		
	Apr	May	Jun	Jul	Aug	\$ep	Oct	Apr	May	Jun	Jul	Aug	\$ep_	Oct
CC	477	(621	396	286	229	167	147	434	388	268	212	- 68	88	33
NA	411	576	416	347	304	227	142	372	373	324	264	139	49	37
LWSA	410	676	416	346	303	223	136	371	373	324	261	138	49	36
TROA	421	574	427	345	334	291	165	367	379	356	300	199	97	74

Table RIPARIAN 6. Mean monthly flows (cfs) in the Spice Reach of the Truckee River based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended minimum flows of 150 cfs (Ang-Sep) or 100 cfs (Oct) are not met

			4	We1						ı	dedian			
	Apr	Мау	1mu	Jut	Aug	\$ep	Oct	Apr	May	វ័យ ក	Jul	Aug	Sep	Cet
CC	2518	3062	1897	638	396	328	601	790	1002	774	347	304	275	372
AN	2308	2965	1665	633	355	339	654	990	980	728	325	282	240	394
LWSA	2396	2964	1665	632	355	339	650	594	979	724	225	281	280	394
TROA	2461	3175	1984	l 682	336	318	561	776	1062	76C	340	300_	275	386
	Ċ			Dry						Extr	a mely l	Dry		
	Apr.	May	ا مناح	Jul	Аыд	Sap	Oct	Арг	May	Jun	Jul	Aug	5 •p	Oct .
CC	455	579	355	235	186	120	125	408	348	224	167	35	41	13
NA.	369	500	336	270	235	181	115	331	298	251	195	90	28	12
LW\$A	368	500	336	271	235	177	213	329	298	250	192	89	29	12
TROA	402	505	354	275	273	252	133	347	311	299	238	143	62	44

Table RIPARIAN 7. Mean monthly flows (cfs) in the Lockwood Reach of the Truckee River-based on model results in wel, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended ecosystem flows (Truckee River Recovery Implentation Team, 2003) are not met.

							_							
			١	Vei							Madlan			
	Apr	May	Jun	Jul	AUg	Sep	Qct	Apr	May	Jun	Jud	Aug	5ep	Det
CC	2710_	3164	1980	732	456	391	683	884	1142	635	405	370	339	j 434
NA	2527	3092	1949	722	422	401	729	825	1054	785	374	339	338	460
LWSA	2525	3092	. 1949:-	721	422	400	729	623	1054	784	374	338	337	460
TROA	2(99)	3264	2041	784	401	391	651	910	1152	846	391	360	330	452
			ı	Dry						Extr	emely	Dry		
	Apr	May	Jup	LuL	Aug	\$op	Oct	Apr	May	Jun	Jul	Aug	Se p	Oct
¢¢	531	634	410	293	242	188	182	467	402	277	218	85	85	83
NA	454	565	¥≟395 ·	322		248	180-	ı 4 11	363	309-	243	141	81	79
LW\$A	452	565	394	322	2923E	242		409	363	309	241	⊴:141	82	-79
TROA	496	566	409	322	323	306	207	420	-371	. 353	269	196	115	114

Table RIPARIAN 8. Mean monthly flows (cfs) below Derby Dam on the Truckee River based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended ecosystem flows (Truckee River Recovery Implementation Team, 2003) are not met.

				Vel							dedkan			
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	lut_	Aug	Sep	Oct
cc	2692	3095	1906		330	300_	674	621	1012	667	300	200	246	396
NA	2514	3055	1889	847.	330	338	7'1	745	1000	557	300	264	291	429
LW54	2512	3054	1889	648	300	338	710	743	1000	55B	300	265	291	429
TROA	2656	3224	1979	890	300	300	631	833	1041	748	300	262	284	432
				Ō r y						Extr	ėmely			
	Apr	Мау	Jun	Ory Jul	Aug	Sop	Øe1	Apr	May	Ոսև			Sep	0ci
cc		May 300	-			\$0p	Oct 100	Apr 60		Jun 67	emely	Dry	Sep 49	
CC NA	Apr		Jun 170	Jul . 120. \$120)	109:	100	•			Ոսև	emely Jul	Dry		0cı
	Apr 200	300	Jun 170	Jul .120. 3120)	109:	100 108 106	100	60 73	85	Jun 67	Jul 50	Dry Aug 27	49	0ci 25

Table RIPARIAN 9. Mean monthly flows (cfs) in Donner Creek based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended minimum flows of 8 cfs are not met.

				Wet							Mediar	1		
	Apr	May	Jun	Jul	Aug	Sep	Oç1	Apr_	May	Jun	Jul	Aug	58p	Oct
CC	1:9	141	140	20	3	54	64	72	49	35	3	3	49	20
NA	119	141	:40	20	4.3	54	67	72	49	35	·3	. 3	49	22
LWSA	119	141	140	20	3	54	67	72	49	35	3	3	48	22
TROA	110	141	140	2C	7	10	72	72	49	35_	8	. 6	10	50
	\Box			Ory						Ext	emely	Dry		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	Миу	Jun	Jui	Aug	550	Oet
CC	25	8	. ż	2	2	4	3	19	2:02	2	2	2	2	· 3
NA	25	8	2	2	2	3	5	19	2	· <u>2</u> .,	2	<u>ت 2.</u>	. 2	3
LWSA	25		2	2	2	3	€	19	: 2.	2	. 2	2	´ 2	3
TROA	. 25	. 7	10,3	்க	⊸ /3	. 104	25	18	2	3	. 3	3	. 8	18

Table RIPARIAN 10. Mean monthly flows (cfs) in Prosser Creek based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended minimum flows of 16 cfs are not met.

				Wet							Mediar	1		
	Дрг	May	Jun	Ju)	Aug	Sep	Oct	Apr	May	Jon	Jul	Aug	Sep	O ¢1
¢¢	172	510	215	237	144	32	329	72	82	121	72	l. 11	√ 8	90
NA	172	510	234	202	122	32	341	72	84	114	[60]	3,42	6	139
LWSA	'72	510	231	202	122	32	341	72	64	114	BG	12	8	138
TROA	. '86	512	187	96	67	158	30:	72	88	111	45	16	45	129
				Dry						Ext	remely	Dry		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	Jul	Aug	Sep	Oct
cc	5	51	37	10	. 5	6	7	5.	16	21	8	5	5	7
NA	5	45	25	5	5	5	8	5	22	. †6	5	5	5	7
LWSA	5	45	29	5	5	5	8	5	22	∿ 15	. 5	5	5	7
TROA	7	27	25	15	• 10	11	12	5	18	18	. io	. 8	8	. 8

Table RIPARIAN 11. Mean monthly flows (cfs) in Independence Creek based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended minimum flows of 6 cfs (Apr-Jul), 4 cfs (Aug-Sep), or 7 cfs (Oct) are not met.

				Wet							Median	,		
	Apr	May	Jun	Jul	Aug	\$cp	Oct	Apr	May	Jun	Jul	Ашд	Sep_	Qçt
ÇÇ	6 5	. 91	_1C5_	54	23	92	28	34	53	44	17	. 4	19	90
NA	65	91	*05	56	23	33	27	34	52	42	17	. 3	18	136
LWSA	65	91	105	52	23	33	27	34	52	42	17	. 3	19	138
AORT	65	91	.03	50	21	29	31	33	52	45	16	10	12	189
	i			Dry						Ext	emely	Ory		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	Jul	Aug	Sop	Oct
¢¢	. 6	16	5	2	2	2	. 9	3	7	. 6	2	2	2	4
NA	1. O.	14	. 3	. 2	2	2	11	2	5	· · . 3	2	. 2	2	7
LW\$A	4	14	9	2	. 2	2	11	2	.5	-//- 3	2	2	2	7
TROA	5	15	6	6	5	8	9	4	Б	8	5	3	7	7

Table RIPARIAN 12. Mean manthly flows (cfs) in Little Truckee River above Stampede Reservoir based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended minimum flows of 35 cfs (Apr-Jul). 14 cfs (Aug-Sep), or 30 cfs (Oct) are not met.

		•		Wet						1	dedlar	1		
	Арг	May	nuĻ	Ju1	Aug	Sqp	Qçı	Apr	May	Jan	Jul	Aug	Sep	Oc1
ÇÇ	363	713	710	195	38	43	43	213	428	279	40	14	26	26
NA	363	713	740	195	43	46	44	212	428	279	42	13	26	27
LWSA	353	713	710	195	4.	46	44	212	428	279	43	13	26	26
TROA	353	713	740	195	39	44	50	214	428	279	45	18	19	25
				Dry						Extr	emely	Dry		
	Apr	May	Jun	Jul	Aug	5 4 p	Φ¢I	Apr	May	Jun	Jul	Αψg	Sep	Oc1
¢¢	74	167	55	θ	- 5	7	0.16	58	105	94433	6	3	6	11
NA	74	'63	58	7	1 4	77	2.67	58	105	200	5	· 3	- д	
LWSA	74	163	58	7	. 4	7.	17	58	105	3.3	5	3	6.	13
TROA	76	·63	62	11	. 9	12	: 4 <u>7.</u>	64	113	∴ 34	e	8	10	- 13

Table RiPARIAN 13. Mean monthly flows (cfs) in Little Truckee River below Stampede Reservoir based on model results in wet, median, dry, and extremely dry hydrologic conditions. Shaded boxes indicate when recommended minimum flows of 45 cfs are not met.

				Wel				_			Medlan	ı		
	Apr	May	Jun	Jul	Aug	Sep	اء۵	Д рг	May	Jun	Jul	Aug	Sep	Cct
CC	547	910	563	277	179		279	284	330	264	144	94	30_	30
NA	558	891	555	242	160	76	321	292	356	265	138	75	30	30
LWSA	559	891	555	242	160	76	320	293	369	265	138	74	30	30
TROA	529	973	483	200	161	125	340	233	314	225	122	85	45	43
				Dry						Ext	emaly	Ory _		
	Apr	May	Jun	Jul	Αμφ	Sep	Qc1	Apr	May	Jun	Jul	Aug	Sep	Ocl
cc	64	48	e 30°	54	.30:	*: 3 0	30.	56	34	38	31)	30	30	30
MA	62	48	30	74	×80°	30.	- 30	46	:34	30	53	30	30	30
LWSA	62	48	30	74	. 30	30	30	48	773	30	54	30	30	30

Table RIPARIAN 14. No Action, LWSA, and TROA flow compared to current conditions in the Lake Table to Damier Creek reach based on model results for wet, median, dry and extremely dry hydrologic conditions.(ND=No Difference, NS = Not Significant).

•														
				Wel							Me	dian		
	Apr	May	Jun	Jul	AU9	Sép	Oct	Apr	May	Jun	_ Jul	Aug	Sep	Oc1
¢c	ND	1,0	ND	. ND	NO_	ND	40	NQ.	ND	NO	ND	YO	ND	NO
NA	NS	NS	N5	NS	N5	NS_	NS	NŞ	N\$	NS.	NS	N5	NS	NŞ
LWSA	NS.	NS	, NS	NS	N5_	NS	NS	NS	Ņ\$_	N\$	NS	NS	N5	NS
TROA	NS_	84	NS	NS	NS	NS	45	NS	NS_	NS	24.3%	N5	NS.	NS
				Ory				l			Extrem	nely Dry		
	Apr	May	חחף	اريل	Aug	5 e p	Oc1	Apr	May	ոսև	J ul	Aug	Sep	Oct
cc	ND	ND	NO	10	πND	ND	NO_	ND	10	VD.	NĎ.	ND	NĐ	ND
MA	NS	NS	СИ	NS	7N8:	-18.0%	26.1%	NS	40	N\$	NS C	NS	22.7%	140.0%
LWSA	NS	NS	ND	NS	NS	-19.1%	34.8%	NS	NO.	NŞ	NS	. NS	27.3%	180.0%
AORT	NS	35.3%	58.3%	16.754	NO	-31.5%	78.3%	N5	45	NS	NS	-15.4%	-20.6%	320.0%

Table RIPARIAN 15. No Action, LWSA, and TROA flows compared to current conditions in the Truckee River in the Donner Creek to Little Truckee River reach based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference: NS = Not Significant).

														
				Wet				l _			Ме	dien _		
L	Apr	Мау	Jun	Jul	Aug	Sep	0cl	Apr	May	Jun	Jul	Aug	Sep	Oct
CC	ND	42	ND	۱۵	ND	ND.	NO	NO.	0.4	89	ND	ND	ND	ND
NA	AS	NS	NS	NS	NS	NS.	10.9%	NS.	NS	NS	NS	NS	NS	NS
LWSA	N5	75	NS	۱5	N5	N5	11.2%	A.S.	2.4	NS	NS	NS	NS	NS
TROA	NS	NS	NS	NS.	NS	NS.	NS	NS.	MB	NS.	NS	NS	NS	N\$_
				Ory		_					Extrem	Hely Dry		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Арг	May	Jun	Jul	Aug	5 e p	Oct
cc	ND	NO	VD.	NO	NĐ	CN	NO	ND	NO	NO	ND	ND	ND	ND
NA	NS	45	NS	VS	NS	\ ' \$	NS	NS	NS	615	NS	17,7%	-26.7%	16.9%
CWSA	NS.	NS	NS	¥S.	2A	' ≁S	NS	NS	NS.	NS	NS	16.7%	-29.6%	18,2%
TROA	NS	NS.	NS	45	45	15.4%	16.3%	NS	NS	NS	۱s	54.3%	38.5%	75.3%

Table RIPARIAN 16. No Action, LWSA, and TROA flows compared to current conditions in the Trophy reach of the Trockee River based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant).

. —				We	:[Med	ian		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apv	Мау	Jun	dub	Aug	\$ep	Oct
CC	NO	NO	N0	ND	ND	40	ND	50	SN	ND	ND	ND.	ND	AD.
NA	NS	NS	NS	N\$	NS	NS	12.4%	NS	A9	NS.	N5	MS	NS	10.7%
LWSA	NS	NS	NS	NS	NS.	N5	12.7%	MS	NS	NS	NS	N5	NS .	10.7%
TROA	NS	NS	NS.	NS	N\$	48	NS	NS	NS	NS	NŞ	NS	45	15
	_			Dr	r					_	Extreme	sty Dry		
_	Apr	May	Jun	Jul	Aug	Sep	Oct	Арг	May	Jun	Jul	Aug	Sép	Oct
CC	AD.	GA.	۸D	ND	ND	ND	ND	ND	ND	NC	ND	. ND	ND	ND
NA	NS	₩S	24	11.6%	10.8%	19.2%	AS	NS	NS.	15.7%	10.2%	31.8%	-24.1%	21,4%
LW\$A	NS	NS	t.S	11.6%	10.3%	17.8%	. NS	NS	N\$	16.2%	NS	30.0%	-26.3%	21,4%
TROA	NS	NS.	٨s	NS	12.5%	35.4%	21.6%	NŞ	NS.	21.15.	17.3%	72.9%	42.8%	77.4%

Table RIPARIAN 17. No Action, LWSA, and TROA flows compared to current conditions in the Mayberry reach of the Truckee River based on model results for wet, median, dry and extremely dry hydrologic conditions, (ND=No Difference, NS = Not Significant).

				We	ıt			•			Wed	8n		
	Арг	Мәу	Jun	Jul	Aug	Sep	Oct	Арг	Мау	Jun	ועז	Aug	Sep	Oct
CC	NO	ND	ND	ND	ND	KD.	ND	NΩ	NO	40	ND	NO.	ND	ND
NA	NS	NS	NS	NS.	NS	ND	12.5%	¥S	Ş	NS	, NS	N5	NS.	10.3%
LW\$A	NS	NS	NS	N5	NS	ND	12.7%	NS	NS	NS	NS	NS.	NS.	10.3%
TROA	N\$	N\$	NS	٧s	N\$	V5	N5	NS	NS	NS	NS	NS	NS	NS
				Dry	,					_	Extreme	ly Dry		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	Ju1	Aug	Sep	Oct
CC	ND.	NO.	ND	ND	ND	ND	ND.	ND	ND	NO	מא	ND	NO	ND
NA	N5	\5	MS	21.0%	22.8%	39.0%	15.4%	N\$	NŞ	25.7%	24.3%	73.9%	NS	77.8%
LW\$A	NS	N 5	85	21,0%	22.5%	36.8%	13.0%	NS	NS	26.3%	23.2%	72.1%	NS	77.8%
TROA	NS	v s	×8	15.0%	26.6%	60.5%	37.07	NS	N5	33.2%	32.1%	131.6%	86.2%	177.8%

Table RIPARIAN 18. No Action, LWSA, and TROA Bows compared to current conditions in the Oxbow reach of the Truckee River based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference: NS = Not Significant).

				We	it						Min	etipn .		
	Apr	May	Joh	Jul	Aug	Sep	Oct	Apr.	May	Jun	tuL	Aug	Sep _	Oct
CC	NO.	NO	NO	. ND	, ND	ND	NO	ND	ЧD	į ND	NO	60	NO.	NÖ
NA	RA.	NS	NS	NS	NO	N5	Y 5	NS	N5	l NS	NS	NS.	NS	NS
LW\$A	A.S	NS	NS	NS.	NO.	NS	48	NS	NS	NS	NS	N5.	55	NS
TROA	5.9	NS	NS	NS_	NS	NS	NS	NS	949	NS	1.9	N5	N5	NS
				Dr	y						Ertrer	naly Dey		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	Jul	Aug	\$ep	Oct
CC	ND	ND	ND	ND.	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND
NA	ИS	NS	NS	21,3%	32.8%	35.9%	NS	N5	48	20.9%	24.5%	104.4%	-27.9%	12.1%
LWSA	NS	NS	NS	21.0%	32.3%	33.5%	N\$	NS	48	20.9%	23.1%	102.9%	27.5%	. N3
TROA	NS	NS	NS	20.6%	45.9%	74.3%	12.2%	NS	45	36.6%	41.5%	192.6%	42.6%	124,21

Table RIPARIAN 19. No Action, LWSA, and TROA flows compared to current conditions in the Spice reach of the Trackee River based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant)

	_		_											
]			Wet							Median	1		
	Apr	May	Jun	Ju1	Aug	Sep	Oc1	Apr	May	Jun	ايرل	Aug	Sep	Ōţ1
CC	NÜ	ND	ND	MD	ND	ND	. ND	, NO	NO	NO.	ND	0.6	ND	ND
NA	NS	NS	NŞ	NŞ.	NS.	NS	NS	NS	NS	NS	NS	N5	NS	NS
LWSA	NS	N\$	NŞ.	145	NS	NS	NS.	NS	NS	N\$	NS	N5	NS	NS
TROA	NS	NS	TNS"	[‡] NS	NS	NS	NS	NS	NS	N\$	NS	NS	NS.	NS
				Ory						Е	stremety	Dry		
	Apr	May	Jun	Jul	Aug	Sep	Qct	Apr	May	Jun	Jul	Aug	Scp	Oct
CC	ND	ND -	· ND	ND	NO	MD.	ND	ND	ND	NO	ND ·	· ND	KD	į 2
NA	14.5%	10.6%	N S	NS.	. 19.0%	32.3%	.NS	-12.0%	NS	211.6%	11.5%	55.9%	NS	25.4%
LWSA	14.9%	10.9%	NS :	Ns	19.0%	30.1%	λ <mark>ivs</mark>	-12.4%	NS.	11.6%	10.6%	65.9%	NS	25.4%
TROA	NS	10.7%	NŞ	NS	33.5%	64.5%	13.7%	10.192	NS.	27.4%	32.6%	130.6%	35.3%	81.0%

Table RIPARIAN 20. No Action, LWSA, and TROA flows compared to current conditions in the Lockwood reach of the Truckee River based on model results for wet, median, dry and extremely dry hydrologic conditions, (ND=No Difference; NS = Not Significant)

	•			w	el						Med	l a n		_
	Apr	May	Jun	õl	Aug	9ep	Oet	Арг_	Мау	Jun	Jul	Aug	Sep	<u>O</u> ct
CÇ	NO	ND	ND	NO	ND	. UND	ND	40	ND	ND	ND	ΝΩ	ND.	ND
NA	48	NS	NS	N.S	N\$	NS	NS	N5	NS	N5	NS .	NS	NS	NŞ.
LWSA	AS	NS	NS	NS	NS	NŞ.	AS.	NS	NS	NS.	N5	NS	NS	N\$
TROA	NS	NS	NS	NS	NS	NS	NS.	NS	NS	NS	NS.	NS	NS	NS
				D	יני						Estrem	ely Dry		
	Apr	May	Jun	Jul	Aug	Sep _	Oct	Apr	May	Jun	luL	Aug	Sap	Oct
cc	ND	ND	ND	ND	ND.	ND	NO.	ND	\D	NO	ND	NO	NO .	ND
NA	NS	NS	NS.	14,9%	26.3%	50.0%	NS	NS	N5	12.1%	16.8%	157.1%	-31.7%	NS
LWSA	NS	NS	NS	15,3%	26.3%	47.5%	70.4%	NS	N5	11.6%	15.0%	154.3%	29.3%	NS
TROA	NS	NS	NS	17.0%	46.61	110.0%	NS	NS	NS	33.5%	42,5%	305.6%	51.2%	238.5%

Table RIPARIAN 2). No Action, LWSA, and TROA flows compared to current conditions in reaches 14-15 (below Dethy Dam) of the Truckee River based on operation model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant).

				We							Median	ı		
	Ари	May	Jun	Jul	Aug	Sep	Фet	Apr	May	Jun	Jul	Aug	\$ep	Oct
CC	ND	ND	ND	ND	ИП	NO	ND	RD	0.0	NO	CN	CM	NO	ND
MA	NS	NS	NS	NS	ND	12.7%	NS .	NS	2/4	85	CN	32.0%	18.3%	NS
LWSA	N5	NS	NS	NS	ND	12.7%	NS_	NS	2,5	NS	CN	32.5%	18.3%	NS
TRQA	N\$	NS	NS	10.2%	ND	NŞ	NS.	NS	ħ\$	12.1%	NĐ	31.0%	15.4%	NS
				Dry	·						xtremely	Ory		
	Арк	May	Just	Jel	Aug	Sep	Oct	Apr	May	AUL	Jul	Aug	Sep	Q¢I
CC	ND	ND	ND	ND.	: ND	ND	ND :	NO	NΩ	NĐ:	. NO	NO.	ND	X5,ND
MA	ND	ND	ND	ND.	NS	NS	NS	21.7%	29.4%	122.6%	66.0%	1926%	-40.8%	40.0%
LWSA	NO	ND	ND	ND.'s	* NS	NS	NS	21.7%	29.4%	122.6%	66.0%	192.6%	-38.8%	40.0%
TROA	NO	ND	ND	MD A	91.8%	NS	NS.	109.7%	27.1%	140.4%	136.0%	307.4%	42.9%	124.0%

Table RIPARIAN 22. No Action, LWSA, and TROA flows compared to current conditions between Donner Lake and the Truckee River based on operation model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant).

				Wet							Medi	an an		
	Арг	May	Jun	Jul	Aug	\$ap	Oct	Apr	May	ជបគ	Jul	Αμg	\$ep	Oct
cc	ND	ND	ND _	ND	180%	ND	ND	CP	CN	ND	λ [™] NO	NO	NO	NO
NA	ND	ND	ND	ND	NO.	ND	ND	CN	ND	ND	ND	NO.3	NO	10.0%
LWSA	ND	ND	ND	ND	NO	ND	ND.	ОN	NO	ND	ND	ND P	NC	10.0%
TROA	NO	ND	ND	ND	133.3%	∧ D	<u> </u>	NO:	NO	٧D	100.0% (102.0%	NO	150.0%
				Dry							Extreme	ly Dry		
	Арг	May	Jun _	Jul	Aug	Sep	Oct	Арг	May	Jun	Jul	Aug	Sep	Oçt
CC	NO	ND	ND	ND	ND	ND .	ND	NO_	NO	ND.	· ND	NO	ND.	ND
NA	NO	ND	· ND	NO	ND	25.0%	65.7%	ND.	ND	ND	ND	.MD	ND	ND
LWSA	ND	ND	ND	ND	NO	25.0%	100.0%	ND	ND	ND	ND .	NO.	_ND_	ND
TROA	ND	-12.5%	60.0%	60.0%	50.0%	150.0%	733.3%	ND	ND	50.0%	50.0%	60.0%	350.0%	500.0%

Table RIPARIAN 23 No Action, LWSA, and TROA flows as compared to current conditions between Prosser Reservoir and the Truckee River based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference: NS = Not Significant).

				We	t						Medi	an		
	Apr_	May	Jun	Jol	Aug	Sep	Oct	Apr	May	Jun	Jul	Aug	Sep	Oct
CC	ND	NU	ND	ND	AD	NO.	ND	ND.	NO	ND	ND	ND 🖟	. ND	ND
AM	ND	NO_	NS	NS	45_	NO	NS	NO	NS	N\$	NS	NS .	ND	53.3%
LWSA	ND	ND	NS	NS	NS	NO	NS	NO	NS	NS	NS	NIS	ND	53.3%
TROA	NS.	NS	NS	NS	t-S	393.8%	NS	ND	NS	NS	NS	45.5%	452.5%	110.0%
	_			Dŋ	,	-		_			Extreme	ly Dry		
	Apr	May	Jun	JÆI	وبنف	Sep	Oct	Apr	May	Jun	Jul	Aug	\$ep	Oct
CC	ND	ND	ND	ND	ND	₹ND	ND	ND:	ND	ND	NO	ND	ซีND	ND
NA	_ND	NS	NS	50.0%	ND .	-ND	14.3%	NO 2	37,5%	NS	37.6 %	ND	ND.	140
LW\$A	ŃD	NS	NS.	50.0%	ND	ND	14.3%	ND.	37.5%	NS	37.5%	NEO	Ñ	NO
TROA	40.0%	NS	NS.	10.0%	100.0%	120.0%	71.4%	ND:	12.5%	NS	25.0%	60.0%	60.0%	28.6%

Table RIPARIAN 24. No Action, LWSA, and TROA flows as compared to current conditions between ladependence Lake and the Little Truckee Riverbased on operation model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant)

								-	_				_	_ .
				W <u>et</u>							Median			
	Apr	Мву	Jun	Jul	Aug	Sep	Oc1	1QA	May	Jun	ابد	Aug	Sep	Oct
CC	ND	ND	NO	40	ND	ND	NO	NO	ND	ND	SeD	NĐ	CM	ND
NA	NO	ND	NO.	45	ND	NS	NS	ND	N5	NS	ND	25.0%	45	53.3%
LW\$A	NC	ND	NO .	45	ND	NS	ผร	OM .	N5	NS	ND	25.03	445	53.3%
TROA	NO	ND	115	45	N5	NS	10.7%	NS	NS	NS	NS	150.0%	85	110.0%
				Dry						Ext	remaly Dry			
	Арг	May	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	Jul	Aug	Sep	Oct
CC	NO	ND_	ND	ND	ND	² ND	. ND	NO.	80	Ø ND	ND	ND .	€ ND	ND
NA	-33.3%	NS	40.0%	ND	64D	-ND	22.2%	-33.3%	-28.6%	-40.0%	ND	. ND	er ND	75.0%
LWSA	-33.3%	NS	-40.0%	ND	NO	ND	22.2%	-33.3%	-28.6%	40.0%	NO	, ND	Ä,N□	75.0%
TROA	-16.7%	ND	60.0%	200.0%	150.0%	300.0%	NO.	39.3%	14.3%	60.0%	150.0%	50.0%	250.0%	75.0%

Table RIPARIAN 25. No Action, I.WSA, and TROA flows in the Little Truckee River from Independence Creek to Stampede Reservoir compared to current conditions based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Nos Significant).

				Wet				Ι΄.			Med	llan		-
l .	Apr	May	Jun	Jul	Aug	Sép	_ 	Apr	May	Jun	Jul	Aug	Sep	Oct
cc	ND	ND	GM	ND	ND	ND	ND	КN	NO	ND	6D	ND	O.A	ND 5
NA	ND	ND	NO	ND_	NS	NŞ	NS	P.S	NO	ND	N5	, NS	KD.	NS .
LW\$A	ND	ND	NO	ND	NS	NS	N\$	f.S	N0	ND	145	. NS −	NO	NUS
TROA	ND	ND	NO	ND	NS	NS	15.3%	NS	ND	NĎ	12.5%	28.6%	NS	NST.
				Dny							Extrem	cly Dry		
	Apr	May	Jun	Jul	Aug	5 0 0	Óci	Арг	May	Jun	₩I	Aug	Sep	Oct
CC	ND	ND	NC	ND	NGS.	לא י	· ND	ND	ND	(80%	ND	NO	ND.*	≨ Nio
NA	ND	NS	NS	-12.5%	NS₩		NS ·	ND	MD	NSQ	16.7%	ФИ	20.0%	27.3%
LWSA	ND	NS	NS	-125%	NS &	7ND	N5 -	ND	NĐ	NS	-18.7%	ND	ND a	£18.2%
TROA	NS	N5	12.7%	37.5%	B0.0%	71.4%	NS	10.3%	N5	NS	50.0%	166.7%	100.0%	10,2%

Table RIPARIAN 26. No Action LWSA, and TROA flows as compared to current conditions between Stampede Reservoir and the Truckee River based on operation model results for well median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant).

'-				Wet				·			Median	1		
	Apr	May	Jun	Jel	Au <u>c</u>	Sep	Oc1	Apr	May	JUN	Jul	Aug	Sep	Oct
CC	ND	,ND	N2	ND	שַע	ND	ND	80	NO	NC	ND	NO.	, AD	ND
NA	NS.	NS.	8A	NŞ	NS-	NS	15.1%	45	NS	NS	549	NS	80	ND
LWSA	NS	NS	NS_	NS	NS	NS	14.7%	V 5	NS	NS_	N\$	_s_	ND	ND
TROA	NS	NS.	NS	N5	ሉይ	56.3%	21.9%	. 4 <u>8</u>	NS.	NS	NS	6.9	50.0%	43.3%
				Dry				_		E	xtremely	Dry		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Арг	May	Jun	Jul	Aug	Sep	Oc1
CC	NO.	N0_	NDa	ND	ND	ND-	NO	ND	ND.	ND	ND	ND	ND	NO
NA	RA.	КD	ND	37.0%	ND ·	ND 3		NS	NØ	ND .	71.0%	NĎ	ND	ND
LWSA	NS	ND.	ND	37.0%	ND-1	S'ND	ND	NS	. NO	WD .	74.2%	ND.z.	, ND	ND I
TROA	NS	14.6%	70.0%	NŞ	50.0%	50.0%	60.0%	NS	32.4%	50.0%	45.2%	50.0%	50.0%	43.3%

Table RIPARIAN 27. 4.WSA, and TROA flows compared to No Action flows between Lake Tables and Donner Creek based on operation model results for wet, median, dry and extremely dry tradictions (ND=No Difference: NS = Not Significant)

<u>(2010)</u>	gic coi	riditions	(ND=:	NO DIT	erence	:: N2 = 1	भवा आहा	lijica)	ot).					
				Wet				_			Media	n		
	Apr	May .	J un	Jul	Aug	540	O c1	Apr	May	ปยค	Jul	Аид	\$ 9 9	Oct
NA	85	NO	NΩ	ND	ND	ND	ND	ND.	ND.	ND_	ND	NO.	NO.	яĐ
LWSA	40	ND	NO	NO	NS	نام	NS.	NS	NS	NS	ND	ND	NS	98
TROA	VS.	NS	NS	K\$	N\$	NS	N\$	NS	NS.	NS	23.6%	NS	NS.	NS
	<u> </u>			Dry							Extremely	Dry		
	Apr	May	Jun	Jel	Aug	Sep	Oct	Apr	May .	Jun	Jul	Aug	Sep	Q01
NA	NO	ND	ND	ND	CN	NĎ	ND	NO.	ND	ND	ND	ND	ND	NĐ
LWSA	NO	ND	ND	ΝD	45	NS	NS	NO	ND	ΝD	NS	_ ND	NS	18.7%
TROA	NS.	38.7%	56.3%	18.0%	MŞ	-16,4%	41.4%	٧S	NS	NS	NS	NS	NS	75.0%

Table RIPARIAN 28. I.WSA, and TROA flows compared to No Action flows in the Truckee River from Donner Creek to the confluence of the Little Truckee River (reach 7) based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference: NS = Not Significant).

				We	H					_	M	ledlan		
	Apr	May	Jun	Jul	Aug	Sep	Oet	Apr	May	Jun	Jul	Aug	Sep	Oct
MA	ND	NO	ND	ND	NO	NO	CF	N۵	ND	ND	NO	ND	NO	NO.
LW5A	NS	NS	NS	NS	ND	ND	٧s	N5	NΩ	NS	, NO	ND	No.	NS
TROA	NS	NS	NS	NS	NS	NS .	NS	NS	NS	NŞ	K\$	NS	NS	NS.
				Dr	y						Extre	maly Dry		_
	Apr	May	Jun	Jul	Aug	5 0 p	Oct	Apr	May	Jun	Jul	Aug	Sep	Oct
AM	ND	NO	ND	ND	ND	ND	NO	NO.	ND.	ND	ND	ND	ND	ND
LWSA	av	ND	מוא	N5	NS	NS	٧S	NS	NO.	NŞ	NS	NS	N\$	NŞ
TROA	NS	NS	NS	NS.	NS	NS.	16.9%	NS.	NS	NS	NS	31.1%	88.9%	50.0%

Table RIPARIAN 29. LWSA, and TROA flows compared to No Action flows in the Trophy reach of the Truckee River treach 9 based on model results for wet, median, dry and extremely dry

hydrologic conditions. (ND=No Difference, N5 = Not Significant).

				V	Vel						Mi	dian		
	Apr	May	Jun	الهلا	Aug	Sep	Oct	Apr	May	Jun	Jul	Aug	Sep	QcI
NA	ND	NO	טא	ND	ND.	NC	, ND	ND	ND	ND.	ND	NO	МĐ	NĎ
LW\$A	N <u>S</u>	NO	ND	ND	ND	NO	NS	NS	GPI	N5	NO	ND	ND	NS
TROA	NS	NS	NS	NS	NS	NS	NS	NŞ	NS	45	N5	NS	NS	NS
				c	ארונ						Extre	nely Dry		
	Apr_	May	Jun	Jul	Aμg	Sep	Oct	Apr	May	Jun	J ul	Aug	Sep	Oct
NA	ND	ND	NO	NĐ	ND	ND	[ND	NO	NO	ND	NO	NĎ	ND	ND
LWSA	NS	ND	NO	NΩ	#S	NS	NS	ND	ND	AS	NS	NS	NS	ND
TROA	VS.	NS	NS	NS	49	13.6%	18.7%	์ 45	NS	NS	NS	31.3%	87-5%	46.1%

Table RIPARIAN 30. LWSA, and TROA flows compared to No Action flows in the Mayberry reach of the Truckee River (reach 10) based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference: NS = Not Semificant).

dir nyor	CALCAELL	LONG	MICHIO	<u>. 12</u> 12	-1100	21112	-, -, -	- 1016 67	<u>. 6</u>	Maar >-				
			_	γ	fc1						Mi	nelba		
	Apr	May	Jun	Jul	Aug	5ep _	Oc1	Apr	May	Jun	Jul	Aug	Sep	Oct
NA	NU	NŪ	ND	QA.	ND	ND	VD	ND	40	ND	80	45	ND	ND
LW\$A	ND.	N0	ND	NS	NS	NO	N5	NS	NO	NS	ND	CF	ND .	ND .
TROA	N\$	NS	NS	NS	NS	NS	45	N5	WS.	MS	VS_	₩S	NS	NS
					rγ						Extre	mely Dry		
	Apr	May	Jun	ful	Aug	Ş∎p	Oct	Apr	May	Jun	Jul	Aug	\$ep	Q¢1
NA	YD.	ND	NΩ	NO	ND.	ND	NO	NC	ND	ND	ND	ND.	NO	ND
LWSA	NS	NS	48	ND	ş	NS .	N5	NS	ND	NS	NS	NS	NS	20
AGRT	N\$	NS	48	NS	∿s	15.5%	18.7%	NS	NS	NS	NS	33.2%	68.4%	56.2%

Table RIPARIAN 31. LWSA, and TROA flows compared to No Action flows in the Oxbow reach of the Truckec River (reach 11) based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant).

·, <u>=</u>										_			_	
				y	/el						Media	an .		
	Apr	May	Joh	Jul	Aug	Sep	Oct	Apr	May	Jun	Jul	Aug	Sep	Oct
NA	ND	ND	NC	ND	NO	. ND	. YO	ND	, ND	, ND	ND	ND	NO	ND
LWSA	ND	ND	NO	MS	NO	. 45	. 75	N5	N5	NS	ND .	. 45	NO	ND
TROA	NS	NS	NS	88	NS.	48	45	N5	N5	NS	NS	45	\5	NS
				C	lry						Extreme	l <u>y D</u> ry		
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	Мау	Jun	JUI	Aug	Sep	Oct
MA	ND	ND	NC	ND	ND	NĐ_	NO	СИ	NQ.	ND	NO	NĎ	NĎ	40
LWSA	NS	ND	NO	NS	NS	NS	NS	NS	NQ	, AD	N\$	NS	NĎ	NS
TROA	N5	NS	NS	NS	NS	28.2%	16.2%	NS.	NS	13.0%	13.6%	43.2%	96.0%	100.0%

Table RIPARIAN 32. LWSA, and TROA flows compared to No Action flows in the Spice reach of the Truckee River (reach 12) based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference, NS = Not Significant).

					WM			_			Media	ın		
	Apr	May	Jun	Jul	Aug	Sea	Oct	Apr	May	Jun	Jul	Aug	Sep	Oct
NA	NO	NQ.	NO	NO	ND	j ND	NO	40	NO_	<u>50</u>	ND	NO	NO	ND
LWSA	NŞ	NS	NC	48	NĎ	NS	NS	N\$	NS	NS	ND	NS	N0	ND
TRDA	NS	NS	NS	NS	NS	NS	NS	11.5%	NS	NS.	NS	NS	٨s	NS
					Dry	_					Extremel	y Ovy		
	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	ابل	Aug	Sep	Oct
NA	\D	ND	ND	ND	ND	ND	טא	ND	ND	NO	МĐ	NO	ND	ND
LWSA	NS	6D	ND	N\$	AD.	NS	85.2%	NS	ND.	NS	NS.	N5	NS .	NS
TROA	٧S	NS	NŞ	NŞ	16.2%	139.2%	15.7%	NS	NS	19.1%	22.1%	58.9%	121.4%	288.7%

Table RIPARIAN 33. LWSA, and TROA flows compared to No Action flows in the Lockwood reach (reach 13) based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference: NS = Not Significant).

	<u></u>			_		_											
					Wel												
١	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	Jul	Aug	Sep	Oct			
NA	ND	40	NO	ND	ND	ND	ND	ND	G/A	ND	ND	NO	NO	40			
LWSA	NS	СN	NO	NS	۸D	N5	ND	NS	NO.	N\$	ND	AS	١s	NO			
TROA	NS	NS	MŠ	NRS.	45	NS	NS	10.3%	NS	NS	NS	NS.	. ∀ S	49			
	Dry									Extremely Dry							
	Apr	May	Jun	Jul	AN C	Sep	_Oet	Арг	May	Jun	ايرز	Aug	5ep	Oct			
NA	NO	NO	ND	No	NO	ND	N/O	A)D	ŮΝ̈́D	ND	ND ND	ND	ND	ND			
LWSA	NS	ND ND	NS	ИD	2	NS.	NS	NS.	ND	^N NO	NS	ND	NS	ND			
AORT	NS	NŞ	NŞ	ND	12.2%	24.6%	15.0%	NS.	NS	14.2%	18.8%	39.0%	42.0%	44.3%			

Table RIPARIAN 34. LWSA, and TROA flows compared to No Action flows in reaches 14 and 15 (below Derby Dum) based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference: NS = Not Significant).

CEMINA	etaloneare, 1132-113 2211 (closes, 113 - 110) Significance.														
				We	at										
	Apr	May	Jun	Jui	Aug	\$ep	О¤	Арг	May	Jun	<u>J</u> trl	Aug	Sep	Oct	
NA	ND	NO.	NHD.	ND	ND	NĎ	40	ND_	NO	ND	ND	ND_	ND	NO	
LWSA	NS	NS	NO	NES	ND	ND	N5	N5	NO	NS	\D	48	ND	NO	
TROA	NS	NS	48	NS	NS.	NS	NS	11.8%	NS	13.9%	NS	NS.	NS	N5	
	Ī			Dr	y .			Extremely Dry							
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	May	JUB	Jul	Aug	Sep	Ort	
NA	ND	ND	ND	NO	NO	KD.	ND	NAD.	. NO	ND.	MD	ND	NO	ND	
LWSA	ND	ND		WIL	MD	·ND	ND	NED	ND	ND	, ND	ND	NS.	ND	
TROA	NO.	ND	ND	ÑD	10.9%	NS.	NS.	69.9%	NS	NS .	42.2%	39.2%	141.4%	60.0%	

Table RIPARIAN 35. LWSA, and TROA flows compared to No Action flows between Donner Lake and the Truckee River based on model results for wer, median, dry and extremely dry hydrologic conditions. (ND=No Difference, NS = Not Significant).

				Wet		_		_			Medi	an -			
	Apr	May	Jun	Jul	Aug	Sep_	QcI	Apr	HERY	Jun	Jul	Aug	Sop	Oct	
NA	NO	, ND	ND_	15	ND	ND	ND	ND	NO	ND	ND 15	ND	NĎ	ND	
LWSA	NC	ND	ND	70_	ND	ND	ND	ND	NO	ND	ND 6	NO	ND	ND	
TROA	NC	ND	ND	7.0	133.3%	ND	ND_	ND	Cs4	NO.	100.0%	100.0%	ND	127.3%	
				Dry					Extremely Dvy						
	Apr	May	Jun	Jul	Aug	Sep	Oct	Арг	May	<u>Jun</u>	Jul	Aug	Sep	Oct	
NA	ND	(IM)	NO	NO	2 ND	٧D	ND	ND	MD	ND.	ND ND	MD /	'⊬ NO	MD	
LWSA	ND	ND	ND	ND	₹.ND	NĎ	20.0%	ΨD	NO		ZIÑO	NO	∵ MD	NO	
ADRIT	ND	-12.5%	50.0%	50.0%	50.0%	233.3%	400.0%	٧D	ND	50.0%	50.0%	50.0%	350.0%	500.0X	

Table RIPARIAN 36. LWSA, and TROA flows compared to No Action flows between Prosser Reservoir and the Truckee River based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant).

				Wet	I			Median								
	Apr	May	Jun	Jul	Aug	Sep	Oct	Арг	May	Jun	Jul	Aug	Sep	Oct		
NA	NU	ND	ND	ND	NĐ	ND	ND	NO	ND	NC	ND	ND⊋	ND	N <u>D</u>		
LWSA	NO.	ND	NO	NO	ND	ND	_ מא	ND	ND	NΩ	ND .	NO s	ND	\ <u>D</u>		
TROA	NS	NS.	48	NS	h5	393.8%	NS	ND_	NS	NS	NS.	33.3%3	462.5%	37.0%		
	<u> </u>			Оту	,			Extremely Dry								
	Apr	May	Jun	Jul	Aug	9ер	Oct	Apr	May	Jun	اباز	Aug	\$ep	Oct		
NA	·ND-	50	NO	ND	NO :-	. ND	ND	ND.	ND	ND	MD	NO	ND	NO:		
LWSA	νò	NO	NO	ND	ND.7	טא	ND	ND.	₩D	ND.	ON:	NO	ND	ND		
TROA	40.0%	NS.	NS	120.0%	100.0%	120.0%	50.0%	ND:	N5	20.0%	100.0%	60.0%	60.0%	25.5%		

Table RIPARIAN 37. LWSA, and TROA flows from Independence Lake to the confluence of the Little Truckee River compared to No Action flows based on model tesults for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant).

				Wet							Median				
	Apr	May	Jun	Jul	Aug	580	Oct	Apr	May	Jun	Jul	Aug	Sep	Oct	
NA	ND	ND	ND	ND	ND	ND	NO	ND	۸D	NΩ	CN]	NID	ND	ND	
LWSA	ND _	ND	ND	NŞ	ND	ND	ND_	ND	AΒ	NO	CN	NO ⊴	ND	ND	
TROA	ND .	ND	NS	NS	NŞ	NS	14.6%	NS	۸D	NS	NS	233,3%	NS	37.0%	
				Dry				Extremely Dry							
	Apr	May	Jun	Jul	Aug	Sép	Öci	_Apr	May	Jun	Jul	Aug	\$ 0 0	Oct	
NA	ND	NÓ	^ ND	ND	ND '	ND	NΩ	<u>∴</u> ND	ND	ND	ND	ND	ND *	١٥	
LWSA	ND	NO	∵eĭy D	ND	ND	* ND	NO.	YND	ND	ND	ND ¹ Y	. ND	ND S	10	
TROA	25.0%	NS	166.7%	200,0%	150.0%	300.0%	NS	100.0%	60.0%	165.7%	150.0%	50.0%	250.0%	83	

Table RIPARIAN 38. LWSA, and TROA flows in Little Truckee River from Independence Creek to Stampede Reservoir compared to No Action flows based on model results for wet, median, dry and extremely dry bydrologic conditions. (ND=No Difference; NS = Not Significant).

				W	ct			Madign							
	Apr	Мау	Jun	luk	. Aug	Sep	Qc1	Apr	May	Jum	Jul	Aug	5ep	Oct	
NA	ND	ND	ND	พอ	ND	ND	NO	CN	ND	ND	ND	ND 'u	ND	ND	
LWSA	ND	ΛD	ND.	ND	NS	NO.	NĎ	NO	ND	ND_	N\$	ND	ND	1NS ^A	
TROA	ND	ΑĐ	N۵	ND	NS	N\$	13.6%	NS.	ND	ND	NS	38.5%	NS	NS [®]	
				Dr	y			Extremely Dry							
	Арг	May	Jun	Jul	Aug	Sép	Ωcı	Apr	May	Jun	Jul	Aug	Şep	Oct	
NA	ND	NO	V O	: ND	ND-∰	g/ND∴	ND	ND	ND	ND		ND	NO.	MO.	
LWSA	ND	NO	CN	ND	NO3X	3 NO	ND	NQ	ND	. ND	7100	ND ÷	. NŞ Ì	N6	
TROA	NS.	NO.	. 45	57.1%	125.0	71.4%	ND	10.3%	NS	N6	80.0%	156.7%1	86.7%	NS	

Table RIPARIAN 39. LWSA, and TROA flows in Little Truckee River from Stampedo Reservoir to the Truckee River compared to No Action flows based on model results for wet, median, dry and extremely dry hydrologic conditions. (ND=No Difference; NS = Not Significant).

				Wet				Median								
	Apr	May	J un	Jul	Aug	\$ep	Oct	Apr	Asay	Jun	Jol	Aug	Sep	Oct		
NA	NO.	NO	NO.	NO	ND.	NO	NO	N	60	VD.	ND	ND	ND	NO		
LWSA		ND	ND	2	NO.	ND	NS	45	NS	ND	ND_	45	ND	NO >		
TROA	ž,	NS	NS	NS	NS	64.5%	. 48	N5	N\$	NS	NS	13.3%	50.0%	43.3%		
	Ory								Extremely Ory							
	Apr	May	Jun	Jul	Aug	Sep	Oct	Apr	May	Jun	Jul	Aug	Sep	Oct		
NA	ĊР	МÖ	ИĎ	NO	NO	ND	ND:	GA.	ND	NO	ND.	ND	·MD.	ND		
LWSA	_ so	NO	ND	NO	ND	ND	ND	9	ND	NO.	NS ²	NO -	. ND	ND		
TROA	11.3%	14.6%	70.0%	NS	50.0%	50.0%	80.0%	19.8%	32.4%	50.0%	-15.1%	.50.0%	50.0%	43.3%		